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Abstract

In this work we quantify the uncertainty over Power Spectral Density estimation of stochastic processes based on realizations with
gapped missing data. For the purpose of imputation, a fully-connected neural network architecture that works in an autoregressive
manner is firstly constructed to probabilistically capture the temporal patterns in the time series data. Particularly, under the Bayesian
scheme, uncertainties with respect to the parameters of the neural network model (i.e. weights) are introduced by multivariate Gaussian
distribution. During training, the posteriors are learnt through variational inference approach. As a result, the missing gaps can be
recursively imputed via our neural network in each realization, and thanks to the probabilistic merit of Bayesian inference, an ensemble
of reconstructed realizations can then be obtained. Further, by resorting to a Fourier-based spectral estimation method, a probabilistic
power spectrum could be derived, with each frequency component represented by a probability distribution.
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1. Introduction

Power spectral density (PSD) function plays an important
role in the representation of stochastic processes, which
empowers statistical analyses of time series data of vast
disciplines in science and engineering. However, spectral
estimation requires a significant amount of complete data
samples to attain a predefined adequate degree of accuracy,
and thus can be challenging when only partial observations
are available [1]–[3]. Missing data situation is ubiquitous in
the recording of many physical processes, either due to the
malfunction of measurement equipment such as clipping in
seismic recordings [4] or the natural irregularities in many
astronomical observations [5].
There are a bunch of signal reconstruction methods that

fill in the missing values in the time domain (e.g. see [6]–
[8]). An obvious advantage is that classical spectral meth-
ods that work on equidistant data, such as periodogram, can
still be employed. However, due to the convolutional nature
of Fourier transform, inaccuracies of the imperfect recon-
struction will be propagated to spectral estimates. Most of
current methods fail to account for the uncertainties related
to the missing data [1]. Similarly, for parametric models
that assume a certain structure of the underlying stochastic
processes, for example an autoregressive model (see [9],
[10]), the parameter uncertainties due to the incomplete
data aren’t well captured.
Alternatively, Bayesian spectral estimation methods nat-

urally deal with uncertainty. For example, in [3] Tobar
proposed a nonparametric Bayesian generative model for
non-uniformly-sampled data. In [11] Christmas proposed a
Bayesian spectral estimation method by assuming Student-t
distributed noise.
However, most of these methods are dedicated to missing

data in a scattered manner, as termed as non-uniformly-
sampled data or irregularly-sampled or unevenly-spaced
data in literature. Insufficient attention are focused on the
missing gap situation, where a large continuous chunk of
data are missing. It’s been noted in some researches that
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longer gaps lead to harder imputations [8]. While simple
methods such as linear interpolation may still provide rea-
sonable predictions in the unevenly-spaced situation, they
may lead to more serious distortion to the original signal
when the gap is relatively long [12]. Normally iterative
methods are employed in filling in an gap [6], [13]. This
leads to a stronger need to account for the uncertainty since
iterative imputation may propagate the errors from earlier
imputations. In this paper, we proposed a strategy based on
Bayesian neural networks to account for the uncertainty dur-
ing the recursive reconstruction strategy of gapped missing
data.

2. Methodologies

2.1. Spectral representation for stochastic processes
Consider a real-values stationary process, 𝑋 (𝑡), there

exists a corresponding complex orthogonal process 𝑍 (𝜔)
such that 𝑋 (𝑡) can be represented in the form [14]:

𝑋 (𝑡) =
∫ ∞

−∞

𝑒𝑖𝜔𝑡d𝑍 (𝜔) (1)

where 𝑑𝑍 (𝜔) is an orthogonal process having the follow-
ing two properties:

E( |d𝑍2 (𝜔) |) = 4𝑆𝑋 (𝜔)d𝜔 (2)

E(d𝑍 (𝜔)) = 0 (3)

In Eq. 3, 𝑆𝑋 (𝜔) is the two-sided power spectrum of the
process 𝑋 (𝑡). In addition, a versatile formula for generating
realizations compatible with the stationary process of Eq.1
is given by [15]:

𝑓 (𝑡) = 2
𝑁−1∑
𝑛=0

√
𝑆 𝑓 (𝜔)Δ(𝜔) cos(𝜔𝑛𝑡 + 𝜙𝑛) (4)

where 𝜙𝑛 is the independent random phase angle distributed
uniformly over the interval [0, 2𝜋]; 𝑁 and Δ(𝜔) relate to
the discretization of the frequency domain.
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2.2. The converge scheme
It’s established that finite time series can be well ap-

proximated by autoregressive AR(𝑝) models. An artificial
neural network model could be considered as a dynamic
autoregressive model that predicts the next value 𝑦𝑡 with a
window of past lagged values ([𝑦𝑡−1, . . . , 𝑦𝑡−𝑑]), as given
by

𝑦𝑡 = 𝑓 (𝒙𝑡−1;w),with 𝒙𝑡−1 = [𝑦𝑡−1, . . . , 𝑦𝑡−𝑑] (5)

As opposed to the fixed coefficients in a classic AR(𝑝)
model, a neural network model instead learn a time-varying
pattern depending on the input lagged window. Moreover,
it’s known for the ability to learn complex nonlinear feature
interactions in a time series.
The autoregressive strategy facilitates the imputation of

themissing sample at each instant, given the pastwindow, so
that a real-time reconstruction can be achieved. Specifically,
when there is a gap in the middle of a signal, a converge
strategy, where we impute the missing locations present
in between, from both directions, can be adopted. In this
sense, the reconstruction is made by iterative predictions.
Implicit in such strategy is the uncertainties in learning

the underlying generating process, and also in doing the iter-
ative imputation. Generally, limited amount of data has re-
stricted machine learning models from effectively learning
the true underlying data generating process. Significant un-
certainties exist on the model configurations that may have
explained the limited data. Consequently, such uncertain-
ties further compromise the generalization power of learned
models in that predictions from uncertain/unrepresentative
models can still be unreliable and over confident. There-
fore, a Bayesian neural networks (BNN) is constructed to
account for the model uncertainties, especially in a context
of missing data.

2.3. Bayesian neural network and variational inference
Uncertainties on the weights of a neural network model

are modelled by probability distributions and learnt in a
Bayesian scheme, given the observed training data. In this
case the training data are the two part of observations around
themissing gap and thus twoBNNmodels are constructed to
implement the forward-backward iterative prediction strat-
egy.
A Bayesian neural network is equivalent to an ensemble

of an infinite number of neural networks. A predictive dis-
tribution can be made for each possible configuration of the
weights, weighted according to the posterior distribution, to
make a prediction about the missing value, as shown below
in Eq. 6:

𝑝(𝑦𝑡 |𝒙𝑡−1,D) =
∫

𝑝(w|D)𝑝(𝑦𝑡 |𝒙𝑡−1,w)𝑑w

= E𝑝(w|D) [𝑝(𝑦𝑡 |𝒙𝑡−1,w)] (6)

where 𝑦𝑡 and 𝒙𝑡−1 represents the prediction and the
lagged window pair in the autoregressive scheme (Eq. 5); w
are the weights and biases of the neural network model and
D represents the training data. As exact Bayesian inference

Figure 1. A Kanai Tajimi realization with 10% gap indicated by
the red vertical bar.

to the posterior 𝑝(w|D) is intractable, and MCMC based
methods are bounded by the huge dimensions of the neu-
ral network. Alternatively, variaitional inference turned to
approximate the true posterior by finding a variational dis-
tribution on the weights 𝑞(w|𝜃), parameterized by 𝜃, that
minimizes the Kullback-Leibler (KL) divergence between
𝑞(w|𝜃) and the true posterior 𝑝(w|D):

F (D, 𝜃) = KL[𝑞(w|𝜃) ‖ 𝑝(w|D)] (7)

=
∫

𝑞(w|𝜃) log
𝑞(w|𝜃)

𝑝(w)𝑝(D|w)
𝑑w

= KL[𝑞(w|𝜃) ‖ 𝑝(w)] − E𝑞 (w |𝜃) log 𝑝(D|w)

In minimizing the loss function (Eq. 7), a naive attempt
to directly take derivatives with respect to (w.r.t) 𝜃 involves
an integral over w, which is computationally intractable. A
strategy of using Monte Carlo sampling to evaluate expec-
tations, are implemented for further approximation [16].

F (D, 𝜃) ≈
𝑛∑
𝑖=1

log 𝑞(w(𝑖) ) |𝜃)−log 𝑝(w(𝑖) )−log 𝑝(D|w(𝑖) )

(8)
Suppose a diagonal Gaussian distribution as the vari-

ational posterior 𝑞(w|𝜃), parameterized by 𝜃 = (𝜇, 𝜎),
where 𝜇 and 𝜎 are vector of mean and standard devia-
tion of the probability distribution of weights, thus dou-
bling the parameters of a neural network model. Fur-
thermore, by obtaining a sample of posterior weights from
parameter-free noises via a transformation: w = 𝜇 + 𝜎 � 𝜖 ,
known by its name as reparameterization trick [17], where
𝜖 ∈ N (0, 𝐼) and � represents pointwise multiplication.
Classical gradients-based optimization progresses can be
used for updating 𝜇 and 𝜎, similarly as updating weights in
the classical way during training.

3. Numerical experiments

In this work, to investigate the uncertainties related to the
missing data, two sources of randomness are considered:
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Figure 2. Uncertainty levels of different gap sizes.

Figure 3. Distribution of the spectral density value on each fre-
quency with 10% missing data.

gap size and gap location. Correspondingly, three scenarios
with different missing gap configurations are conducted.
A Kanai Tajimi (KT) model, which was widely used in
stochastic dynamics of structures to represent a stationary
ground motion process, is adopted herein to give the PSD
function for the underlying stochastic process:

𝐺 (𝜔) =
1 + 4𝜉2𝑔 (𝜔/𝜔𝑔)

2

1 − (𝜔/𝜔𝑔)2 + 4𝜉2𝑔 (𝜔/𝜔𝑔)2
𝐺0 (9)

where𝐺0 is the constant power spectral density of the in-
put white noise process; 𝜔𝑔 and 𝜉𝑔 can be interpreted as the
characteristic frequency and damping ratio of the ground.
Then spectrum compatible realizations are generated via
the Spectral Representation method [15] (see Eq. 4).
For experiment purposes, the parameters values as [2]

are used herein: 𝐺0 = 0.01, 𝜔𝑔 = 5𝜋 rad/s, 𝜉𝑔 =0.63. One
single missing data gap at a random location is created in a
KT compatible simulation. As an example, Fig. 1 shows a
realization of the KT model with a gap of 10% data artifi-
cially created. TwoBNNmodels are constructed by training
on the two corresponding sides of observations. Recursive
imputation by a forward-backward converge scheme are

employed for the reconstruction of the gap. Due to the
probabilistic nature of the BNN models, an ensemble of
reconstructions are obtained as suggested in [18]. It is ex-
pressed mathematically by Eq. 6. Then, the nonparametric
Welch method [19] is used to compute the PSD estimate on
each reconstruction of the ensemble. Welch method is cho-
sen for an acknowledged improved performance on spectral
leakage, bias and variability than a classical periodogram.

3.1. Uncertainty on gap size
Conceivably, the size of the gap affects the energy loss

in the observed signal. While zero filling in an unevenly-
spaced signal may be generally acceptable when only lack-
ing a few data points, a continuous series of zeros lead to
prominent energy loss.
Fig. 2 depicts the 95% credible intervals (95% CI) of

the PSD estimates with respect to frequencies, in a decibel
scale, with a gap size of different sizes. Representatively,
four gap sizes (from5%up to 30%) are considered. A gap of
each size is independently created on the same realization at
the same location, leaving the size of a gap the one variable
thatmatters. As indicated by the interval range, it’s apparent
that uncertainty levels are increasing with larger gaps. This
is intuitive as the longer the gap is, the more imputations,
as opposed to real observations, are inputted for spectral
estimation, leading to higher uncertainties. The increasing
uncertainties with longer gaps are seen at higher frequencies
ranges, approximately from 7 to 15 hz. Also, it can be
seen in such higher frequency ranges, the ground truth are
mostly located near the bottom of the 95% intervals. It
suggested that the trained BNN is having more difficulties
estimating the spectral density values for higher frequency
components.
To quantitatively account for the uncertainties under dif-

ferent configurations of missing gap, several uncertainty
metrics are designed and tabulated, as shown in Table 1.
Inspire by [20], a Prediction Interval Coverage Probability
(PICP) is defined as:

𝑃𝐼𝐶𝑃 =
𝑐

𝑛
(10)

where 𝑐 represents the total number of frequencies whose
PSD estimated value is captured by the 95% credible inter-
val. If note the predicted lower and upper bound as 𝑦𝐿 and
𝑦𝑈 , then 𝑐 can be defined by an index variable 𝑘𝑖 of length
𝑛 that represents if every frequency value is captured by the
estimated credible interval:

𝑐 =
𝑛∑
𝑖=1

𝑘𝑖 (11)

𝑘𝑖 =

{
1 𝑦𝐿𝑖 ≤ 𝑦𝑖 ≤ 𝑦𝑈𝑖

0 else
(12)

In addition, AREA represents the area between the lower
and upper bounds and MAE is the mean absolute error of
the PSD estimates across the frequency range.

𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

𝑦𝑖 − 𝑦𝑖 (13)
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Figure 4. Multiple different realizations with 5% missing gap at random locations

Table 1. Uncertainty metrics with different missing data configu-
rations

gap size PICP 1 AREA 2 MAE 3

5% 76.92% 17.31 0.39
10% 80.77% 24.18 0.59
20% 69.23% 33.24 1.13
30% 73.08% 53.04 1.72

1 prediction interval coverage probability
of spectral estimates; 2 mean absolute
error of spectral estimates;
3 the area of interval bounds

With the metric AREA illustrates the magnitude of uncer-
tainty levels, and MAE evaluates the accuracy of the mean
estimation, PICP has reported the percentage of ground
truth PSD values being captured by the credible intervals
across the frequency domain.
In more details, we can see the distribution of the spectral

density values with respect to each frequency bin, as shown
in Fig. 3 using a violin plot. The violin plot contains a
box inside, which is the same as a regular box plot where
quantiles such as 25%, median and 75% are shown. The

white circle represents the median value while the red cross
represents the ground truth, i.e., the PSD value from the
full realization. In addition, the shape of the distribution
of the PSD with respect to each frequency value are also
shown via kernel density estimation. As shown in Fig. 3,
with 10%missing data, the estimated 95% credible interval
well captured the the ground truth.
A thorough tabulation regarding the performance of our

proposed method under different gap sizes are listed in Ta-
ble 1. Quantitatively it can be seen that with longer gaps
comes with higher uncertainties, and lower accuracy. In-
deed, Fig. 2 has illustratively shown such two effects.

3.2. Uncertainty on gap location
Consider that the gap may occur at any random arbitrary

location in the signal, a gap with the size as 5%missing data
is created at 20 times, each at a different random location in
one complete realization. Uncertainty metrics are listed in
Table 2. It can be seen that while the uncertainty level and
coverage levels are similar between different locations, there
are some deviation in terms ofMAE errors. Such difference
may be resulted from the discrepant length of existing train-
ing data observations separated by the gap. Except for the
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Table 2. Uncertainties on the location of the gap

gap location PICP AREA MAE

A 0.63 18.83 0.69
B 0.79 18.37 0.43
C 0.69 18.22 0.69
D 0.63 17.76 0.67
E 0.69 17.08 0.65
F 0.63 18.01 0.67
G 0.85 17.05 0.50
H 0.87 17.76 0.38
I 0.65 16.51 0.73
J 0.71 15.85 0.55
K 0.75 16.89 0.43
L 0.58 17.05 0.72
M 0.63 16.13 0.52
N 0.60 18.11 0.68
O 0.69 20.52 0.68
P 0.67 16.39 0.66
Q 0.81 16.32 0.43
R 0.79 17.80 0.40
S 0.73 17.94 0.50
T 0.77 17.65 0.49

Figure 5. Estimated PSD for 30 realizations - 5% missing gap at
random locations

gap is located at exactly in the middle, these two data parts
for training two models are of different lengths. One would
expect a model with more training data may result in bet-
ter results. It suggested that due to the location of gap, an
weighted strategy may need to be introduced to account for
the discrepancies of the two learned models.

3.3. Uncertainty of a hybrid situation
To consider the randomness of the realization and the gap

location, we have thereby generated 30 realizations from the
KTmodel in Eq. 9. Such experiment setting is similar as the
that in [8], with the only difference as the pattern of miss-
ing data: a continuous gap is considered herein whereas
scattered missing points are used in their case. Of which,
9 realizations are shown in Fig. 4 as an attempt to illus-
trate the variance of reconstructed performance based on

different realizations. The estimated power spectral density
from a single realizations is noisy while an average over an
ensemble of realizations stand as a better approximation to
the underlying smoothing PSDF, as shown in Fig. 5.

4. Conclusion

This paper presents an investigation of the uncertainties
as to the spectral density estimation of incomplete time se-
ries with missing gaps. As a reconstruction based method,
a Bayesian neural network (BNN) model that works in
an autoregressive manner is used to probabilistically learn
the temporal patterns in the existing observations and with
which iterative imputation are made as reconstructions. Pa-
rameter uncertainties of the BNN are represented in prob-
ability distributions during training and predictive uncer-
tainties of the iterative reconstructions can thus be com-
puted. For the missing gap, the randomness from the gap
size, location as well as the simulated realization from the
underlying process are considered. The results suggested
generally our interval estimations have well included the
ground truth even for a missing gap up to 30%. Longer
gaps lead to higher uncertainties and larger errors, espe-
cially for relatively higher frequencies. For the BNN based
reconstructions, the location of the gap will affect the ob-
servations to be trained on and therefore affect the PSD
estimates, especially the accuracy. More thorough experi-
ments regarding the bias and variance of the proposed BNN
reconstruction approach will be done shortly.

Code

The Python code for the implementation of a Kanai
Tajimi model and the Spectral Representation Method
can be found at https://github.com/leslieDLcy/
KTnSRM.
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