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In this paper, the challenge of quantifying the uncertainty in the estimation of power spectral density (stationary and
nonstationary) of ground motion processes subject to missing data is addressed. Specifically, to exploit additional
information besides the incomplete recording, simulated ground motions are generated by a stochastic finite-
fault model, with its region-specific parameters (source, attenuation, and site parameters) modeled as probability
distributions. Then a Bayesian neural network is constructed to probabilistically learn the temporal patterns from
such uncertain time-series data. Epistemic uncertainties on the model parameters of the Bayesian neural network
model are learnt via variational inference. Thanks to the probabilistic merit of the Bayesian neural network, an
ensemble of reconstructed realizations can be obtained, which leads to a probabilistic power spectrum, with each
frequency component represented by a probability distribution. This framework is of great importance to researches
such as stochastic structural dynamics, where accurate stochastic representations are needed for characterizing
engineering excitation processes but faced with incomplete ground motion recordings.
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1. Introduction

The analysis of structures under random dynamic
excitations, such as ground motions, requires re-
alistic characterization of the stochastic excita-
tions. Power spectral density, especially evolu-
tionary power spectral density (EPS), provides a
useful representation of the ground motion pro-
cesses (Liu, 1970; Shinozuka and Deodatis, 1988;
Shields and Deodatis, 2013). However, spectral
estimation becomes challenging when only lim-
ited and partial recordings are available. Missing
data exist in both historical and modern earth-
quake time histories due to intermittent instrumen-

tation failure (for instance old mechanical instru-
ments in historical strong motions or cheap unre-
liable temporary instruments that leads to clipping
around the peak motion) (Maranò et al., 2017;
Zhang et al., 2016).

A number of signal reconstruction methods
that fill in the missing values in the time do-
main are proposed (e.g. see Kondrashov and Ghil
(2006); Kondrashov et al. (2014); Comerford et al.
(2015a)). An obvious advantage is that classi-
cal spectral methods working on equidistant data,
such as periodogram, can still be employed. How-
ever, due to the convolutional nature of Fourier
transform, inaccuracies of the imperfect recon-
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struction will be propagated to spectral estimates
(Tobar, 2018). Most of current methods fail to
account for the uncertainties related to the missing
data (Comerford et al., 2015b; Zhang et al., 2017).

To address this challenge, a Bayesian neu-
ral network (BNN) based method is developed
herein to compute the uncertainty regarding the
estimation of power spectral density (stationary
and nonstationary) of ground motion processes
subject to missing data. Firstly, to exploit addi-
tional information besides the incomplete record-
ing, simulated strong motions are generated by
a stochastic finite-fault model, with its region-
specific parameters (source, attenuation, and site
parameters) modeled as probability distributions.
Then a Bayesian neural network is constructed to
probabilistically learn the temporal patterns from
such uncertain time-series data. More specifically,
epistemic uncertainties on the model parameters
of the Bayesian neural network model are learnt
via variational inference. Thanks to the proba-
bilistic merit of the Bayesian neural network, an
ensemble of reconstructed realizations can be ob-
tained, which leads to a probabilistic power spec-
trum, with each frequency component represented
by a probability distribution.

2. Stochastic finite-fault model

Building on a stochastic model of spectral am-
plitudes of ground motions, finite fault model-
ing is useful for simulating ground motions for
a large earthquake by simulation of many small
earthquake as subfaults that constitute an extended
fault plane (Boore, 2003; Atkinson and Boore,
2006). At the core it is a seismological model (see
Eq. (1)) of ground motion’s amplitude spectrum
with source, path and site parameters, which en-
capsulate the physics of the earthquake process
and wave propagation.

A(f) =
CM0

1 + (f/f0)2
Z(R) exp[−πfR/Q(f)β]

exp (−πfκ0)
(1)

where M0 is the seismic moment and f0 is
the corner frequency, whose dependence on M0

is given by f0 = 4.9 × 106β(Δσ/M0)
1/3.

Δσ is referred to as stress drop, β represents
the shear wave velocity in the vicinity of the
source. The constant C is given by: C =

RΘΦV F/(4πρsβ
3R0), where RΘΦ is the radia-

tion pattern; V represents the partition of total
shear-wave energy into horizontal components;
F accounts for the free-surface effect; R0 is the
a reference distance and ρ is the density in the
vicinity of the source. Z(R) is the geometrical
spreading function defined by a piecewise series
of straight lines. The quality factor Q(f) is an
inverse measure of anelastic attenuation. The term
exp(−πfκ0) represents a high-cut filter that ac-
counts for the attenuation of the high-frequency
motions.

3. A Bayesian approach for spectral
density estimation with missing data

3.1. Autoregressive modeling scheme

It’s established that finite time series can be well
approximated by autoregressive AR(p) models.
An artificial neural network model could be con-
sidered as a dynamic autoregressive model that
predicts the next value yt with a window of past
lagged values ([yt−1, . . . , yt−d]), as given by

yt = f(xt−1;w),with xt−1 = [yt−1, . . . , yt−d]

(2)
In the context of missing data, such autoregres-

sive strategy facilitates the imputation of the miss-
ing sample at each instant, given the past window,
so that a real-time reconstruction can be achieved.
Particularly, as opposed a linear combination of
fixed coefficients in a classic AR(p) model, a neu-
ral network model instead is known for the ability
to learn complex nonlinear feature interactions in
a time series.

Implicit in such strategy is the uncertainties in
learning the underlying generating process, and
also in doing the iterative imputation. Generally,
limited amount of data has restricted machine
learning models from effectively learning the true
underlying data generating process. Significant
uncertainties exist on the model configurations
that may have explained the limited data. Con-
sequently, such uncertainties further compromise
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the generalization power of learned models as pre-
dictions from uncertain/unrepresentative models
can still be unreliable and over confident. There-
fore, a Bayesian neural networks (BNN) is con-
structed to account for the model uncertainties,
especially in a context of limited data.

3.2. Bayesian neural networks and
Variational Inference

A Bayesian neural network is equivalent to an en-
semble of an infinite number of neural networks.
A predictive distribution can be made for each
possible configuration of the weights, weighted
according to the posterior distribution, to make
a prediction about the missing value, as shown
below in Eq. 3:

p(yt|xt−1,D) =
∫

p(w|D)p(yt|xt−1,w)dw

= Ep(w|D)[p(yt|xt−1,w)] (3)

where yt and xt−1 represents the prediction
and the lagged window pair in the autoregressive
scheme (Eq. 2); w are the weights and biases of
the neural network model and D represents the
training data. As exact Bayesian inference to the
posterior p(w|D) is intractable and MCMC based
methods are bounded by the huge dimensions
of the neural network, alternatively, variational
inference turned to approximate the true poste-
rior by finding a variational distribution on the
weights q(w|θ), parameterized by θ, that mini-
mizes the Kullback-Leibler (KL) divergence be-
tween q(w|θ) and the true posterior p(w|D):

F(D, θ) = KL[q(w|θ) ‖ p(w|D)] (4)

=

∫
q(w|θ) log q(w|θ)

p(w)p(D|w)
dw

= KL[q(w|θ) ‖ p(w)]− Eq(w|θ) log p(D|w)

In minimizing the loss function (Eq. 4), a naive
attempt to directly take derivatives with respect
to (w.r.t) θ involves an integral over w, which is
computationally intractable. A strategy of using
Monte Carlo sampling to evaluate expectations, is
implemented for further approximation (Blundell
et al., 2015).

F(D, θ) ≈
n∑

i=1

log q(w(i))|θ)− log p(w(i))

− log p(D|w(i))

(5)

Further, assume a diagonal Gaussian distribu-
tion as the proposed variational posterior q(w|θ),
parameterized by θ = (μ, σ), where μ and σ are
vector of mean and standard deviation of the prob-
ability distribution of weights. This will therefore
double the parameters of a neural network model.
Subsequently, a sample of posterior weights can
be obtained to deal with the back propagation,
from parameter-free noises via a transformation:
w = μ + σ � ε, known by its name as repa-
rameterization trick (Kingma and Welling, 2013),
where ε ∈ N (0, I) and � represents pointwise
multiplication. After such transformation, classi-
cal gradient-based optimization algorithms (eg.
stochastic gradient descent) can still be used for
updating μ and σ, similarly as updating weights
in the classical way during training.

4. Numerical experiments

In this section one real accelerogram record-
ing from the ESM (Engineering Strong Motion)
database is used to demonstrate the performance
of the proposed approach. Note that one can gen-
erally have only one observed seismic recording
as a realization of a stochastic process, therefore
the spectral estimations from such full recording
would then serve as the reference for comparison.

In this paper, given a ground motion time-
history record, power spectral density (PSD) es-
timates are derived by Welch method (stationary
case) (Welch, 1967), and the evolutionary power
spectrum (EPS) are estimated from short time
Fourier transform (Liang et al., 2007).

Based on the meta data information from such
recording, source, attenuation, and site parameters
to Eq. (1) are known and then simulations can
be generated. Variabilities of such parameters are
considered in Table 1, while other deterministic
parameters are given in Table 2.

Missing data are created at random locations,
drawn from a uniform distribution of the time in-
dex in the recording, given by: (Comerford et al.,
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Table 1. Statistical parameters of the stochastic finite
fault model

Parameter Mean Standard Distribution
deviation type

Log stress 1.70 0.31 Gaussian
Kappa 15a 70b Uniform
Depth 39 155 Gaussian

Source: Region specific parameters are referenced from (Bindi
et al., 2011); a,b represent the minimum and maximum bound
in the case of a uniform distribution

Table 2. Source and Path parameters of the Stochastic
finite fault model

Parameter Description Value

ρs density of the medium 2.7
β shear wave velocity 3.2
V horizontal partition 1/

√
2

RΘΦ radiation pattern 0.55
F free-surface factor 2
R0 reference distance 10
Z(R) geometrical spreading b1 = −1.35;

b2 = −0.58;
b3 = −1.53;

Q quality factor Q = 250.4f0.29

Source: Region specific parameters are referenced from (Bindi
et al., 2011)

2015a).

f0(t) =

{
f(t) , ra(t) � m

0 , ra(t) < m
(6)

where f0(t) is the recording with missing data,
from the original complete recording f(t); ra is
a vector of equally spaced numbers from 0 to 1
arranged in random order and m is the fraction of
missing data. An example of incomplete recording
with 40% missing data is tested in this analysis,
which can be seen in Fig. 1, where the blue bars at
the bottom indicates the locations of the missing
values. Without explicitly stating otherwise, the
results shown in the following sections are based
on this example of incomplete recording.

With the BNN trained from 30 simulations, we
apply such model to predict the missing values
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Fig. 1. The recording with 40% missing data at ran-
dom locations
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Fig. 2. One reconstructed time-history from the en-
semble (Amplitude is normalized)

of the incomplete recording (by Eq.( 3)). An en-
semble of 500 reconstructions is made, based on
which the uncertainties over the estimated power
spectrum can be seen in Fig. 3. In particular,
Fig.2 shows one reconstructed time-history from
the ensemble, which matches well with the wave-
form of the original recording. Despite a signifi-
cant portion of data missing (40%), the ensemble
mean PSD agrees well with the target PSD from a
complete recording. Generally target PSD values
across the whole frequency range are well cap-
tured in the 95% credible interval bounds.

Moreover, it can be seen that in lower frequency
ranges, the ground truth PSD values mostly lie
near the upper bound of the 95% intervals, while
at higher frequency ranges (eg. > 12Hz), the
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Fig. 3. Power spectral density of the ensemble recon-
structions
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Fig. 4. The distribution of spectral density values with
respect to frequencies

ground truth PSD values are closer to the lower
bound. It suggested different behaviours when the
BNN model learns the temporal patterns.

In more details, Fig. 4 illustratively shows the
distribution shape of spectral density values with
respect to frequencies, as well as statistics regard-
ing the ensemble PSD estimations are also shown
in Fig. 4. The box within represents the regular
box plot where quantiles such as 25%, median
and 75% are shown. The blue circle represents
the median value while the red cross represents
the ground truth, i.e., the PSD value from the full
recording.

The stationary PSD estimates provide merely
the average spectral distribution, without time in-
formation. But engineering interests exist in ob-

taining a time-varying spectral representation due
to the ”moving resonance” of nonlinear structures.
As such, estimates of the mean EPS of the en-
semble are shown in Fig. 5. More importantly, the
distributions of spectral density values, S(f, t),
at various time instants and frequency bins are
displayed in Fig. 6, where 4 representative com-
binations of time instants and frequency bins are
selected to show the uncertainty of spectral esti-
mates.
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Fig. 5. Mean EPS of an ensemble of reconstructions

Response spectra (pseudo-acceleration, 5%

damped) of the 500 reconstructions are shown
in gray (see Fig. 7), which closely match the
reference response spectra from the complete
recording shown in red. As a comparison, Fig. 8
shows the response spectra in the case of only
10% data are randomly removed. It suggests
that such reconstructions can be potentially used
for a scenario-based structural analyses (eg. time
history analysis) when the otherwise complete
recording has desired magnitude or distance. This
is of great engineering importance due to the
scarcity of recorded motions for many earth-
quake scenarios and site locations. A reliable and
response-spectrum compatible reconstruction can
enrich the database of strong motions.
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